AI外観検査 (画像認識) のはじめ方、すすめ方、精度の向上

セミナーに申し込む
オンライン 開催

本セミナーでは、中小製造現場でいくつかの導入実績をあげた講師が手がけたAI外観検査の取り組みを紹介いたします。
活動事例を通じて得られた、AI外観検査の導入プロジェクトの進め方から学習データの質と量の課題、学習を意識した画像情報の集め方、品質保証への対応までの知見を解説いたします。

日時

開催予定

プログラム

ここ数年、AI (人工知能) の応用が急速に進展しています。Deep Learning (深層学習) が劇的な認識率の向上をもたらしてAI分野を発展させ、生成AIがその応用範囲を広げています。かたや、製造現場ではAI外観検査 (画像識別) を中心に導入プロジェクトが立ち上がっていますが、狙った識別精度が得られず、導入に至らない例が聞かれます。学習データ (画像データ) の前処理 (データクレンジング) にかかる負担や良品・不良品データの不均衡がおもな原因にあげられます。また、特にDeep Learningでは識別にかかる根拠がわかりにくく、品質保証の観点から導入を見送る現場も多いです。  そこで、本講座は中小製造現場でいくつかの導入実績をあげた講師が、自身が手がけたAI外観検査の取り組みを紹介。活動事例を通じて、AI外観検査の導入プロジェクトの進め方から学習データの質と量の課題、学習を意識した画像情報の集め方、品質保証への対応までを解説します。さらには、導入後の運用を通じての精度向上のための考え方にも触れます。

  1. AI画像認識システムの開発実例紹介
    1. パン識別システム「BakeryScan」
    2. 不織布の外観検査システム
    3. 油圧部品の外観検査システム
    4. 金属チェーンの外観検査システム
    5. レンガの外観検査システム
  2. AI外観検査プロジェクトのはじめ方
    1. AI外観検査の進め方・概念実証 (PoC)
    2. 機械学習を意識した画像データの撮影
    3. 学習が難しい画像
    4. 学習しやすい画像のための前処理
  3. 学習データの量と質の課題
    1. 学習データの準備にかかる負荷
      • 画像の収集
      • ラベルの付与
    2. 学習データはどの程度必要か
    3. 外観検査における学習データ不均衡の問題
    4. 学習データの拡張,生成AIの活用
    5. ラベル付き公開データセットと転移学習による対応
    6. 生成AIの活用
  4. 識別根拠の課題と品質保証への対応
    1. Deep Learningは内部分析が困難
    2. 説明可能人工知能 (XAI)
    3. Grad-CAMによる注目領域確認
    4. 品質保証への対応・段階的なAI外観検査の導入
  5. AI外観検査システム導入の進め方まとめ
    1. 外部資金の獲得
    2. 不良品の定義確認と不良品サンプルの収集
    3. 撮影方法の検討
    4. 撮影装置の導入とデータ収集からPoC
    5. 初期判定モデルを作成し,プロトタイプとして導入
    6. モデル改良と精度検証の繰り返し
    7. 本格運用開始後の維持管理
    8. 外観検査プロジェクトを成功させるために
  6. 質疑応答

受講料

複数名受講割引

アカデミー割引

教員、学生および医療従事者はアカデミー割引価格にて受講いただけます。

全2コース申込セット受講料について

2日間コースのお申込み

割引対象セミナー

ライブ配信対応セミナー / アーカイブ配信対応セミナー

ライブ配信またはアーカイブ配信セミナーのいずれかをご選択いただけます。

ライブ配信セミナーをご希望の場合

アーカイブ配信セミナーをご希望の場合