ニューラルネットワーク分子動力学法の基礎とその応用展開

セミナーに申し込む
オンライン 開催

本セミナーでは、ニューラルネットワーク分子動力学シミュレーション活用の成功例、従来の分子動力学シミュレーション比較によるニューラルネットワーク分子動力学シミュレーションの特徴・長所、ニューラルネットワーク分子動力学シミュレーションの基礎・方法論・計算手順、うまく計算できなかった場合の対処方法、今後の活用方法・将来戦略について、分かりやすく解説いたします。

日時

開催予定

プログラム

ここ数年、データ科学と計算科学を組み合わせた「ニューラルネットワーク分子動力学シミュレーション」が、大学などの研究機関のみならず、企業においても大きな注目を浴びています。
特に、

 ニューラルネットワーク分子動力学法はこれまでの分子動力学法に比較して多くの長所を有することから、その産業応用が加速度的に広がっています。しかし、その進展が非常に速すぎるために、ニューラルネットワーク分子動力学法を基礎から学ぶ機会が十分に提供されていない現状があります。  そこで本講演では、ニューラルネットワーク分子動力学法の基礎から応用までの講義を中心に行うとともに、ニューラルネットワーク分子動力学法の特徴・長所、さらにはニューラルネットワーク分子動力学法が得意な計算対象や課題、うまく計算できなかった場合の対処方法についても説明をさせて頂き、今後、ニューラルネットワーク分子動力学シミュレーションを行う時に、どのようなことに気をつけて行けば良いのかなど実践的な内容についてお話をさせて頂きます。  受講者の方には、ニューラルネットワーク分子動力学シミュレーションをいかに実際の企業における材料開発に応用可能であるか、どうすればニューラルネットワーク分子動力学シミュレーションを企業で有効に活用できるのかの基礎と将来戦略を理解して頂けるものと考えています。なお、各聴講者の質問についても、可能な範囲で回答します。

  1. 計算科学の企業における意義と活用方法
    1. 計算科学シミュレーションの企業における意義
    2. 計算科学シミュレーションの応用例
    3. 計算科学を活用した高速スクリーニング
    4. 計算科学シミュレーションによる特許戦略
    5. 計算科学シミュレーションを活用した産学連携
  2. ニューラルネットワーク分子動力学 (NNMD) 法の特徴
    1. 従来の分子動力学法との違い
    2. 第一原理分子動力学法との比較
    3. Tight-Binding量子分子動力学法との比較
    4. ReaxFF反応力場分子動力学法との比較
    5. NNMD法の特徴1:第一原理計算に相当する精度で大規模計算が可能
    6. NNMD法の特徴2:パラメータ開発の困難さからの脱却
    7. NNMD法の特徴3:多元素系への応用が可能
    8. NNMD法の特徴4:複雑な化学反応への応用が可能
    9. NNMD法の特徴5:ReaxFFでは困難な二次元材料への応用が可能
  3. ニューラルネットワーク分子動力学法の基礎
    1. 分子動力学法の基礎理論
    2. ニューラルネットワークの材料設計への応用例
    3. ニューラルネットワーク分子動力学法の概要
    4. ニューラルネットワークの基礎理論
    5. ニューラルネットワーク分子動力学法の歴史
    6. ニューラルネットワーク分子動力学法の基礎理論
    7. ニューラルネットワーク分子動力学法の計算手順
  4. ニューラルネットワーク分子動力学 (NNMD) 法の応用例
    1. ニューラルネットワーク分子動力学 (NNMD) シミュレータの開発
    2. NNMD法のマルチフィジックス現象への応用
    3. NNMD法の多元素系への応用
    4. NNMD法の複雑な化学反応への応用
  5. 計算科学シミュレーションの今後の発展
    1. マルチフィジックス計算科学
    2. マルチスケール計算科学
    3. スーパーコンピュータ「富岳」成果創出加速プログラム
  6. 質疑応答・個別相談

受講料

複数名同時申込割引について

複数名で同時に申込いただいた場合、1名様につき 40,000円(税別) / 44,000円(税込) で受講いただけます。

テキスト送付に係る配送料

ライブ配信・アーカイブ配信受講の場合、別途テキストの送付先1件につき、配送料 1,100円(税別) / 1,210円(税込) を頂戴します。

ライブ配信セミナーについて