本セミナーでは、ベイズ最適化について取り上げ、ベイズ最適化の基礎について解説いたします。
また、不確実性を伴う制御できない変数が存在するもとでの制御可能変数の良さをロバスト尺度により定量化し、このロバスト尺度に対するベイズ最適化手法について紹介いたします。
製造業をはじめとする様々な実応用の場において、実験工程を効率化することは重要な課題である。近年、機械学習・AI 技術を用いることによる実験工程の効率化に関する研究が多数行われている。特に、ベイズ最適化と呼ばれる機械学習アルゴリズムを用いることにより、最適な実験条件を効率的に探索することが期待できる。 本セミナーでは、実応用上特に重要となる単目的最適化問題、多目的最適化問題およびロバスト最適化問題をベースにベイズ最適化アルゴリズムの基礎と応用について解説します。また、ベイズ最適化を行う際は適切な予測モデルおよび獲得関数と呼ばれる評価関数を設計する必要があるが、どのような問題に対してどのようなモデル、獲得関数を設計すべきかについても概説する。