ChatGPT × Pythonによる統計解析とデータ分析・予測への応用

再開催を依頼する / 関連するセミナー・出版物を探す
オンライン 開催

本セミナーでは、ChatGPTについての基礎、統計解析の基礎、Google Colaboratory環境でのPythonの使い方、生成AI全般の基礎について、実務で活かせるように実践的に分かりやすく解説いたします。

日時

開催予定

プログラム

ChatGPTすなわちOpenAI社が開発した自然言語処理モデルの生成AIが近年台頭し、テキストベースの対話形式で自然な回答を生成できるようになりました。統計解析においても、「〇〇解析をしてください」という命令文 (プロンプト) を入力するだけで解析の手法、アイデア、Pythonのソースコードなどの情報を容易に入手することができるようになりましたが、手元にあるデータの解析をするまでには至りませんでした。  一方、上位版ChatGPT4 においては、GPTsの拡張機能であるData Analyst (旧Advanced Data Analysis、Code Interpreter) が使えるようになりました。ChatGPT3.5との大きな違いは、情報を提供してくれるだけでなく、実際に解析したいデータをアップロードした上でプロンプトを入力すると、そのデータを解析し、解析結果の解釈までしてくれます。統計解析がAIに丸投げ可能な時代がついにやってきました。本講座ではChatGPT4により感覚的に得られた結果をGoogleのクラウド環境であるGoogle ColaboratoryでのPythonを使った手法で得られた結果と比較しながら初心者でも分かるように解説します。

  1. ChatGPT:次世代統計解析ツール
    1. 生成AIをとりまく背景
    2. ChatGPTとは
    3. ChatGPT3.5とChatGPT4との違い
    4. ChatGPT4の登録方法
    5. プロンプト (命令文) 入力のポイント
  2. ChatGPT4:記述統計編
    1. 記述統計概論
    2. CSVファイルの準備とアップロード
    3. プロンプト (命令文) の入力
    4. 要約統計量の実行と出力
    5. グラフの作成と出力
    6. Google Colab/Pythonを使った手法との比較
  3. ChatGPT4:推測統計編
    1. 推測統計概論
    2. CSVファイルの準備とアップロード
    3. プロンプト (命令文) の入力
    4. 点推定・区間推定の実行と出力
    5. 仮説検定の実行と出力
    6. Google Colab/Pythonを使った手法との比較
  4. ChatGPT4:一般化線形モデル編
    1. 一般化線形モデル概論
    2. CSVファイルの準備とアップロード
    3. プロンプト (命令文) の入力
    4. 回帰分析の実行と出力
    5. 分散分析の実行と出力
    6. ロジスティック回帰分析の実行と出力
    7. Google Colab/Pythonを使った手法との比較
  5. 将来展望
    1. 生成AIの可能性と限界
    2. 生成AIを活用したデータサイエンスの将来展望
  6. まとめ
  7. 質疑応答

受講料

受講者の声

複数名同時申込割引について

複数名で同時に申込いただいた場合、1名様につき 40,000円(税別) / 44,000円(税込) で受講いただけます。

ライブ配信対応セミナー / アーカイブ配信対応セミナー

ライブ配信セミナーをご希望の場合

アーカイブ配信セミナーをご希望の場合