機械学習に基づいた不確実環境下における適応的実験計画

再開催を依頼する / 関連するセミナー・出版物を探す
オンライン 開催

本セミナーでは、ベイズ最適化について取り上げ、ベイズ最適化の基礎について解説いたします。
また、不確実性を伴う制御できない変数が存在するもとでの制御可能変数の良さをロバスト尺度により定量化し、このロバスト尺度に対するベイズ最適化手法について紹介いたします。

日時

開催予定

プログラム

製造業をはじめとする様々な実応用の場において、実験工程 (計画) を効率化することは重要な課題である。近年、機械学習・AIを用いたベイズ最適化と呼ばれる適応的実験計画法が盛んに開発されており、ベイズ最適化によって様々な実験工程の効率化が達成されている。一方で、実応用上は実験工程の一部の実験変数が制御できないもとで、制御可能変数を最適化しなければならないケースも多く、この場合は通常のベイズ最適化を直接適用することができない。  本セミナーでは、はじめにベイズ最適化の基礎について概説する。次いで、不確実性を伴う制御できない変数が存在するもとでの制御可能変数の良さをロバスト尺度により定量化し、このロバスト尺度に対するベイズ最適化手法について紹介する。

  1. はじめに
    1. ブラックボックス関数について
    2. ベイズ最適化について
  2. ガウス過程と獲得関数について
    1. ガウス過程モデル
    2. 獲得関数の基礎
  3. 単目的最適化問題に対するベイズ最適化手法
    1. 最大化問題
    2. 領域推定問題
  4. ロバスト最適化問題に対するベイズ最適化
    1. 期待値尺度最大化問題
    2. 期待値尺度に対する領域推定問題
    3. 分布ロバストな期待値尺度最大化問題
    4. その他のロバスト尺度例
  5. 関連する話題
    1. 多目的ベイズ最適化/多目的ロバストベイズ最適化
    2. 実応用例
  6. おわりに

受講料

ライブ配信セミナーについて