AI・機械学習の従来型研究開発への現実的な組み込み方および、データベースの構築と機械学習との連携・運用

再開催を依頼する / 関連するセミナー・出版物を探す
オンライン 開催

本セミナーでは、研究開発部門におけるデータ共有システムを取り上げ、様々な分野のR&D部門のデータ管理を10年以上にわたり支援してきた講師の実績と経験をもとに、システム、研究者、組織体制など様々な角度から問題及び改善方法を解説いたします。

日時

開催予定

プログラム

IoTやAIの普及により、製造工程以降のデータ利活用は急激に進展しています。一方、公的研究機関であれ、民間企業であれ、R&D部門におけるデータの取り扱いは属人的なままであり、研究の信頼性が阻害されたり、効果的なデータの利活用がほとんど進んでいないのが実態です。R&D部門は技術の源泉であり、データを精緻に管理して効果的に利活用する、つまりデータ分析・AI化を行うことは、今後の競争力にとって不可欠です。  本講演では、まず、R&D部門のデータ共有・利活用の実情をお話しさせていただき、データ共有・利活用が進まない状況がなぜ発生してしまうのか?そのような状況にはどのような問題がはらんでいるのか?AI・機械学習を実際の実験研究にどのように組み入れていくべきか?に関して説明をさせていただきます。最後に、データベースと機械学習の連携・運用を維持・拡張させていくときの課題について、具体例をもとに、陥りがちな落とし穴とそれらの回避方法を解説させていただきます。

  1. はじめに
    1. 講演者のR&D実績とデータ共有、利活用の取り組みについて
  2. R&D部門のデータ共有の実情
    1. R&D部門のデータ蓄積の実情
    2. 属人的データ蓄積状況が生み出される原因
    3. 属人的データ蓄積状況が引き起こす問題
  3. AI・機械学習に必要なデータ共有はどう実現し、何が期待できるか?
    1. 属人的データ蓄積状況を脱するために必要な方策
    2. 報告書の共有で期待して良いこと、良くないこと
    3. データ共有で研究の何が改善できるのか?
  4. AI・機械学習を実際の実験研究にどのように組み入れていくべきか?
    1. 機械学習などのMIの特性と注意すべき点
    2. 機械学習などのMIを研究へ組み込む方法
  5. データベースと機械学習の連携・運用を維持・拡張させていくときの課題
    1. R&D部門におけるデータ蓄積基盤としてデータベースがなぜ必要か?
    2. R&D部門においてデータベースと機械学習を連携させていく場合の注意点
    3. データ蓄積、データベース化着手時に陥りがちな落とし穴とそれを防ぐ方策
    4. データ蓄積、データベース運用時に陥りがちな落とし穴とそれを防ぐ方策

受講料

複数名受講割引

アカデミー割引

教員、学生および医療従事者はアカデミー割引価格にて受講いただけます。

ライブ配信セミナーについて