研究・実験データの蓄積とその「検索/分析」機能改善の方策

再開催を依頼する / 関連するセミナー・出版物を探す
オンライン 開催

本セミナーでは、R&D部門のデータ共有、利活用の実情から解説し、データ共有・利活用状況を改善するために必要な方策に関して、電子実験ノートを導入する際に必要な要件及び、各個人に必要な意識改革や会社としての体制づくり等を説明いたします。

日時

開催予定

プログラム

IoTやAIの普及により、製造工程以降のデータ利活用は急激に進展しています。一方、公的研究機関であれ、民間企業であれ、R&D部門におけるデータの取り扱いは属人的なままであり、研究の信頼性が阻害されたり、効果的なデータの利活用がほとんど進んでいないのが実態です。R&D部門は技術の源泉であり、データを精緻に管理して効果的に利活用する、つまりデータ分析・AI化を行うことは、今後の競争力にとって不可欠です。  本講演では、まず、R&D部門のデータ共有、利活用の実情をお話しさせていただき、データ共有、利活用が進まない状況がなぜ発生してしまうのか?そのような状況にはどのような問題がはらんでいるのか?等を説明させていただきます。次に、データ共有、利活用状況を改善するために必要な方策に関して、特に、実際にデータを蓄積し、検索、分析するときの項目名の決定法や分析方法、さらに各個人に必要な意識改革や会社としての体制づくり等を説明させていただきます。最後に、これら方策を実施した具体例をもとに、改善効果および改善運用後に陥りがちな落とし穴とそれらの回避方法に関して解説させていただきます。

受講料

ah3. 複数名同時受講割引について

アカデミック割引

日本国内に所在しており、以下に該当する方は、アカデミック割引が適用いただけます。

ライブ配信セミナーについて