ディープラーニングの基礎と実践

再開催を依頼する / 関連するセミナー・出版物を探す
オンライン 開催

本セミナーでは、機械学習について基礎から解説し、ディープラーニングの具体的な実践方法をわかりやすく解説いたします。

日時

中止

プログラム

機械学習/ディープラーニングに取り組むために初歩の理論と実践の方法を学びます。  前半はなるべく数式を使用せず、データ処理、機械学習を説明します。後半は、ディープラーニングの基礎を解説し、Windowsでの環境構築方法から、自身のもつデータを分析する実践方法をデモ形式にて解説します。講演後、すぐにディープラーニングを実践できることを目標とします。

  1. 機械学習/ディープラーニングを行う際に必要なデータ処理の基本
    1. データの定義
    2. 扱うデータの特性を把握する
      1. 時間軸/場所の考慮
      2. データを発生させるもの
    3. データの前処理
      1. データの抜け、異常値への対応
      2. データの量を調整する (増やす/減らす)
      3. データの次元を削減する
    4. ディープラーニングの精度を上げるためにどのようなデータを用意するか?
      1. 必要となるデータの量
      2. データクレジング
      3. フレームワークでの処理
    5. サンプルデータの説明
      1. デモで使用するサンプルデータの説明
  2. 機械学習/ディープラーニングの数理・確率論〜対象物を数値情報へ変換する〜
    1. 分布
    2. 次元とベクトル
    3. 画像を数値情報へ変換する
    4. 言語を数値情報へ変換する
    5. 音を数値情報へ変換する
    6. 状態を数値情報へ変換する
  3. 機械学習の基礎と実践
    1. 機械学習の基本
      1. データがモデルをつくる
      2. 学習結果をどう受け取るべきか
    2. 学習の種類
      1. 教師あり学習の基本
      2. 教師なし学習の基本
      3. 強化学習の基本
    3. 結果の分類
      1. 回帰
      2. クラス分類
    4. Windowsで機械学習環境をオープンソースにて構築
      1. 使用可能なオープンソース一覧
      2. Pythonの設定 (Windows10端末の例)
    5. サンプルデータを機械学習で処理
      1. 何を導き出したいか?の定義
      2. 使用できるモデルは?
      3. Pythonを実行し結果を得る
    6. 機械学習のプログラム解説
  4. ディープラーニングの基礎と実践
    1. 機械学習とディープラーニングの違いは?
      1. ニューラルネットワークとは
      2. 生じた誤差の吸収
      3. 特微量の抽出/学習の方法
    2. ディープラーニングを分類し、その特徴を把握する
      1. 畳み込みニューラルネットワーク CNN (Convolutional Neural Network)
      2. 再帰型ニューラルネットワーク RNN (Recurrent Neural Network)
      3. 強化学習 (Deep Q – learning)
      4. 新しい流れ Attetion/Transformerに関して
    3. サンプルデータをディープラーニングで処理
      1. TensorFlowで動かし結果を得る
      2. PyTorchで動かし結果を得る
    4. ディープラーニングのプログラム解説
      1. TensorFlowの解説
      2. PyTorchの解説
    5. 精度を上げるためにいかにパラメータを最適化するか?
      1. Optunaを使用したパラメータ推定
    6. XAI
      1. XAIの基本
      2. サンプル
    7. その他、実践にあたり注意すべきこと

受講料

案内割引・複数名同時申込割引について

R&D支援センターからの案内登録をご希望の方は、割引特典を受けられます。
案内および割引をご希望される方は、お申込みの際、「案内の希望 (割引適用)」の欄から案内方法をご選択ください。

「案内の希望」をご選択いただいた場合、1名様 45,000円(税別) / 49,500円(税込) で受講いただけます。
複数名で同時に申込いただいた場合、1名様につき 25,000円(税別) / 27,500円(税込) で受講いただけます。

アーカイブ配信セミナー