AI外観検査 (画像認識) のはじめ方、すすめ方、精度向上への考え方

再開催を依頼する / 関連するセミナー・出版物を探す
オンライン 開催

本セミナーでは、中小製造現場でいくつかの導入実績をあげた講師が、自身が手がけたAI外観検査の取り組みを紹介。活動事例を通じて、AI外観検査の導入プロジェクトの進め方から学習データの質と量の課題、学習を意識した画像情報の集め方、品質保証への対応までを解説いたします。

日時

開催予定

プログラム

ここ数年、AI (Artificial Intelligence、人工知能) の応用が急速に進展しています。劇的な認識率の向上をもたらしAI分野を発展させたのが、脳の働きからヒントを得た学習手法である「Deep Learning (深層学習) 」のアルゴリズムであり、実装が容易なライブラリの登場により、画像認識を中心に利用例が報告されています。かたや、製造現場ではAI外観検査 (画像識別) を中心に導入プロジェクトが立ち上がっていますが、狙った識別精度が得られず、導入に至らない例が聞かれます。学習データ (画像データ) の前処理 (データクレンジング) にかかる負担や良品・不良品データの不均衡がおもな原因にあげられます。また、特にDeep Learningでは識別にかかる根拠がわかりにくく、品質保証の観点から導入を見送る現場も多いです。  そこで、本講座は中小製造現場でいくつかの導入実績をあげた講師が、自身が手がけたAI外観検査の取り組みを紹介。活動事例を通じて、AI外観検査の導入プロジェクトの進め方から学習データの質と量の課題、学習を意識した画像情報の集め方、品質保証への対応までを解説します。さらには、導入後の運用を通じての精度向上のための考え方にも触れます。

  1. AI画像認識システムの動向と導入基礎
    1. AI画像認識の基礎
    2. 代表的な深層学習モデル
    3. AI画像認識システムの事例紹介
    4. AI外観検査システム導入時の注意点
  2. AI画像認識システムの各種実例
    1. パン識別システム「BakeryScan」の特徴と実際
      1. BakeryScanのシステム構成
      2. BakeryScanの開発時の課題
      3. BakeryScanの現場導入時の課題
    2. 不織布画像検査システムの特徴と実際
      1. 不織布の異物検査
      2. 既存の画像検査システムの課題
      3. 不織布画像検査システムの構成と特徴
      4. 機械学習による異物判別
    3. 油圧部品についての自動外観検査システムの特徴と実際
      1. 油圧部品外観検査の課題
      2. One Class SVM (OCSVM) による良品学習
      3. OCSVMの課題とVAEによる異常検出
      4. 二次識別による誤検出の改善
    4. チェーン製造ラインにおける外観検査
      1. チェーン外観検査の課題
      2. チェーン外観検査システムの構成
      3. オートエンコーダによる良品学習と異常検知
    5. 耐火レンガの外観検査
      1. 耐火レンガ外観検査の課題
      2. 耐火煉瓦外観検査システムの構成
      3. 画像処理による初期検査とAIによる二次検査
  3. AI外観検査のはじめ方と機械学習を意識した画像データ準備・前処理
    1. AI外観検査の進め方
      1. 検査項目の網羅と評価基準の明確化
      2. PoC (Proof of Concept) 概念実証
    2. 機械学習を意識した画像データ (学習データ) の準備
      1. 撮影環境の工夫
      2. 照明による撮影画像の違い
      3. 検証用画像撮影時の注意
    3. 学習が難しい画像
      1. 撮影環境や条件のばらつき
      2. 背景による誤認識
    4. 学習しやすい画像のための前処理
      1. 前処理としてのルールベース画像処理
      2. 画像の「標準化」「白色化」
  4. 学習データの量と質の課題
    1. 学習データの準備にかかる負荷 (画像の収集、ラベルの付与)
    2. 学習データはどの程度必要か
    3. 外観検査における学習データ不均衡の問題
    4. 学習データの拡張と生成系AIの活用
    5. 学習済みモデルからの転移学習の活用
  5. 識別根拠の課題と品質保証への対応
    1. Deep Learningは内部分析が困難
    2. 説明可能性・解釈性 (XAI) に関する技術
    3. GradCAMによる注目領域確認
    4. 段階を踏んだ実運用
    5. 運用開始後の精度維持・向上
  6. まとめ
    1. 実用化に至らない原因
    2. AI画像認識システム実用化を成功させるには

受講料

複数名受講割引

アカデミー割引

教員、学生および医療従事者はアカデミー割引価格にて受講いただけます。

ライブ配信対応セミナー / アーカイブ配信対応セミナー

ライブ配信またはアーカイブ配信セミナーのいずれかをご選択いただけます。

ライブ配信セミナーをご希望の場合

アーカイブ配信セミナーをご希望の場合