センシング技術は、センサーと呼ばれる感知器などを使用して様々な情報を計測して数値化する技術ですが、それにより取得されたデータについてAI技術を用いて分析・診断・予測などを行い、センシング技術を知能化へ発展させることに大きく期待されています。
AI技術にはChatGPTが生成AIとして話題となっている一方、生産技術開発の現場ではAI技術をどう導入するか、多くの課題が残っています。本セミナーはAI技術の基礎をわかりやすく説明し、ニューラルネットワークの各種モデルとディープラーニングについて、それらの基本原理および応用について実例を挙げながら紹介します。さらにディープランニングの一種であるMask R-CNNを例にし、それの基本原理や転移学習などを紹介し、光沢部品の表面検査への応用を通じてそれによる検査システムの構成手法を紹介します。
- 人工知能 (AI) と脳の情報処理
- 人工知能 (AI) について
- 人工知能 (AI) とは
- 脳の情報処理とニューラルネットワーク
- ニューラルネットワークのモデルとその特徴
- 人工知能の歴史と適用範囲
- 機械学習とニューラルネットワーク
- 機械学習 (Machine Learning) の基礎
- 機械学習と相互結合型ニューラルネットワーク
- 機械学習と階層型ニューラルネットワーク
- 深層学習と転移学習
- 深層学習とビックデータ
- ニューラルネットワークの各種モデルとその知能化センシングへの応用例
- 相互結合モデルと応用例
- セルラーニューラルネットワーク (CNN) と異常音検出への応用
- 動的ネットワーク (DRN) とセンサフュージョンへの応用
- 自己組織マップネットワーク (SOM) と音源定位への応用
- ベイジアンネットワークと運転危険度予測への応用
- 階層型モデルと応用例
- 階層型ニューラルネットワークと肝臓病識別問題への応用
- サポートベクトルマシンとプリント基板欠陥検査への応用
- 階層型ニューラルネットワークと次元削減への応用
- 階層型ニューラルネットワークと時系列予測問題への応用
- 畳み込みニューラルネットワークと応用例
- 畳み込みニューラルネットワークと水道管漏水検出への応用
- 周波数解析による水道管漏水の計測と診断の問題点
- リカレンスプロットによる漏水音の位相情報の抽出
- 畳み込みニューラルネットワークによる漏水検出
- 位相パターンの相互相関による漏水位置の検出
- Mask-R CNNとその光沢表面部品自動検査システムへの応用
- CNNのみ検査システムの課題点とMask R-CNNの特徴
- Mask R-CNNを用いる表面自動検査システムの構成
- 画像計測部の基本構成と構築
- Mask R-CNNを用いる欠陥検査部の構築
- 欠陥検出精度の評価