機械学習による技術動向調査テクニックと特許実務へのAI導入・応用の勘所

再開催を依頼する / 関連するセミナー・出版物を探す
オンライン 開催

本セミナーでは、特許調査の実務について基礎から解説し、機械学習による特許調査をデモを交えて解説いたします。

日時

開催予定

プログラム

特許調査でのAI活用と主に先行技術・技術動向調査の効率化について特許調査と機械学習の観点から講演します。最近では商用のAIを利用した特許調査ツールも複数登場しています。現在は、AIへの過剰な期待の時期から冷静な判断が求められる時期に移行中です。  最初に特許調査と検索の基礎について概観します。第3章ではAIの概要と特許調査への応用について留意点と原理的な制限事項について述べます。第4章では、商用AI特許調査ツールの活用事例を紹介します。第5〜7章では、デモを交えてオープンソースを用いた機械学習の特許調査への応用事例を単語・文書のベクトル化、文書分類、文書ベクトルの次元圧縮による特許公報の俯瞰可視化と技術動向調査への応用を紹介します。調査目的に応じたアルゴリズムと特徴量の選択が重要であり、また教師あり機械学習には良質な教師データの準備が重要です。特許調査ツールの特徴を把握して使いこなす意識が大切です。

  1. はじめに
    1. 講師自己紹介
    2. アジア特許情報研究会紹介
  2. 特許調査と検索の基礎
    1. 調査対象と調査範囲の特定・明確化
    2. マッチングと適合
    3. 特許調査における再現率 (網羅性) と適合率 (効率)
    4. 先行技術調査と侵害防止調査の検索モデルの違い
    5. 「完全一致」⇔「最良一致」検索モデルの比較
    6. 特許調査システムとその評価方法
  3. AIの概要と特許調査への応用
    1. 人工知能 (AI:Artificial Intelligence) とは
    2. AI、機械学習、深層学習について
    3. AI活用特許調査システムへの過剰な期待
    4. 特許調査への機械学習適応時の留意点
    5. 人とAIの役割分担
    6. 問題の定式化
    7. AIの使用と情報要求
    8. シンボルグランディング (記号接地) 問題
    9. ノーフリーランチ (NFL) 定理
    10. フレーム問題
    11. 過学習 (汎化性能)
    12. 特徴量選択 (醜いアヒルの子の定理)
  4. 商用AI特許調査ツールの活用事例
    1. AI特許調査ツールへの要求性能
    2. Patentfieldの活用事例
    3. PatentfieldのAIセマンティック検索
    4. PatentfieldのAI分類予測
    5. THE調査力AIのSDI調査への活用
    6. PatentSQUAREのAI検索事例
  5. オープンソースを用いた機械学習の特許調査への応用
    1. 特許調査のためのオープンソース (OSS) の基礎
    2. 特許調査における「OSSツール」と「商用ツール」の相互補完的使用
    3. 機械学習概要 (分類、回帰、クラスタリング、次元圧縮)
    4. 特許分野における自然言語処理導入のメリット
    5. 特許調査用学習済モデルの作成とその評価方法
    6. 先行技術調査の流れ (進め方)
    7. 分散表現 (単語埋め込み) とは
    8. 分布仮説に基づいた文脈中の単語の重み学習 (word2vec)
    9. doc2vecによる公報 (文書) 単位の類似度計算
    10. doc2vecによる発明の要素 (文) 単位の類似度計算
  6. 機械学習のクラス分類の応用事例
    1. ディープラーニングの基礎検討
    2. 文書のベクトル化検討
    3. one hotベクトル
      • BoW
      • TF・IDF等
    4. 分散表現ベクトル
      • word2vec
      • doc2vec
      • fastText等
    5. 機械学習による文書分類
    6. SDI調査への応用
  7. 教師無し機械学習 (クラスタリング、次元圧縮) の応用
    1. 単語・文書のクラスタリングによる動向調査への応用
    2. 文書ベクトルの次元圧縮による特許公報の俯瞰可視化
    3. 文書分類との組み合わせによるパテントマップの自動作成
  8. 特許実務へのAI利用の現状のまとめと将来展望
    1. 特許庁 (JPO) における人工知能 (AI) 技術の活用動向
    2. 特許調査分野におけるAI技術の活用動向

付録 自分でできる特許情報解析ツール紹介

  1. キーワード抽出関係
    1. word2vec,doc2vecによる単語・文書の類似度計算と類似単語・文書抽出
    2. termextractによる専門用語 (キーワード) 自動抽出
    3. Cytoscapeによる文脈語のネットワーク分析
  2. pythonで始める機械学習
    1. python環境構築の概要
    2. doc2vecによる文書・単語の類似度計算と類似文書・単語抽出の解説

受講料

複数名受講割引

アカデミー割引

教員、学生および医療従事者はアカデミー割引価格にて受講いただけます。

オンデマンドセミナーの留意点