AI外観検査導入のための基礎と進め方・留意点

再開催を依頼する / 関連するセミナー・出版物を探す
オンライン 開催

本セミナーでは、中小製造現場でいくつかの導入実績をあげた講師が手がけたAI外観検査の取り組みを紹介いたします。
活動事例を通じて得られた、AI外観検査の導入プロジェクトの進め方から学習データの質と量の課題、学習を意識した画像情報の集め方、品質保証への対応までの知見を解説いたします。

日時

開催予定

プログラム

ここ数年、AI (人工知能) の応用が急速に進展しています。劇的な認識率の向上をもたらしAI分野を発展させたのが、「Deep Learning (深層学習) 」のアルゴリズムであり、実装が容易なライブラリの登場により、画像認識を中心に利用例が報告されています。  かたや、製造現場ではAI外観検査 (画像識別) を中心に導入プロジェクトが立ち上がっていますが、狙った識別精度が得られず、導入に至らない例が聞かれます。画像データの前処理にかかる負担や良品・不良品データの不均衡がおもな原因にあげられます。また、特にDeep Learningでは識別にかかる根拠がわかりにくく、品質保証の観点から導入を見送る現場も多いです。  そこで、本講座は中小製造現場でいくつかの導入実績をあげた講師が、自身が手がけたAI外観検査の取り組みを紹介。活動事例を通じて、AI外観検査の導入プロジェクトの進め方から学習データの質と量の課題、学習を意識した画像情報の集め方、品質保証への対応までを解説します。

  1. AI画像認識システムの動向と導入基礎
    1. AI画像認識の基礎
    2. 国内外のAI画像認識の最新事例
    3. AI画像認識システムのメリット
    4. AI画像認識システム導入時の留意点
    5. 「機械学習」と「深層学習」の選択
  2. AI画像認識システムの各種実例
    1. パン識別システム「BakeryScan」の特徴と実際
      1. BakeryScanのシステム構成
      2. BakeryScanの画像処理 (特徴量の抽出方法等)
      3. パン識別にかかる課題
      4. 現場導入時の課題
      5. BakeryScanのアルゴリズムの改良
    2. 不織布画像検査システムの特徴と実際
      1. 不織布の異物検査
      2. 既存の画像検査システムの課題
      3. 不織布画像検査システムの構成と特徴
      4. 機械学習による異物判別
    3. 油圧部品についての自動外観検査システムの特徴と実際
      1. 外観検査の課題
      2. 正常・異常判別と機械学習による2クラス分類
      3. AIの限界とデータセットの不均衡
      4. ONE Class SVM (OCSVM) による良品学習
      5. OCSVMの課題とVAEによる異常検出
      6. 導入した外観検査システムとロボットのハンドカメラによる撮像
      7. VAEによる傷検出と誤検出の改善
  3. AI外観検査のはじめ方と機械学習を意識した画像データ準備・前処理
    1. AI外観検査の進め方
      1. 検査項目の網羅と評価基準の明確化
      2. 試作開発の前段階における概念実証 (PoC)
    2. 機械学習を意識した画像データ (学習データ) の準備
      1. 画像撮影時の注意点
      2. オススメのPoC用撮影環境
    3. 学習が難しい画像
      1. 撮影環境や条件のばらつき
      2. 背景によるご認識の例
    4. 学習しやすい画像のための前処理
  4. 学習データの量と質の課題
    1. 学習データの準備にかかる負荷
      • 画像の収集
      • ラベルの付与
    2. 学習データはどの程度必要か
    3. 外観検査における学習データの質の課題 (データの不均衡)
    4. 学習データの拡張 (Data Augmentation)
    5. ラベル付き公開データセットと転移学習による対応
  5. 識別根拠の課題と品質保証への対応
    1. Deep Learningは内部分析が困難
    2. 説明可能性・解釈性 (XAI) に関する技術
    3. Deep Learningが着目しているところ (Grad-CAM)
  6. AI画像認識システム導入の進め方
    1. 要求定義の取りまとめ
    2. AI機能の選定
    3. 社内教育とプロジェクトの立ち上げ方 (産学連携助成の活用等)
    4. 学習データの準備とその留意点
    5. 概念実証 (PoC) の特徴・考え方・進め方
    6. ラインでの実運用
    7. 運用による精度向上

受講料

案内割引・複数名同時申込割引について

R&D支援センターからの案内登録をご希望の方は、割引特典を受けられます。
案内および割引をご希望される方は、お申込みの際、「案内の希望 (割引適用)」の欄から案内方法をご選択ください。
複数名で同時に申込いただいた場合、1名様につき 22,500円(税別) / 24,750円(税込) で受講いただけます。

ライブ配信セミナーについて