Pythonによる機械学習の基礎と異常検知の理論、実装方法

再開催を依頼する / 関連するセミナー・出版物を探す
オンライン 開催

本セミナーでは、機械学習全般に共通する基本的な概念、そして特に要望の多い異常検知の理論や実装方法を分かりやすく解説いたします。

日時

開催予定

プログラム

本セミナーでは、機械学習全般に共通する基本的な概念、そして特に要望の多い異常検知の理論や実装方法を分かりやすく解説します。Python機械学習ライブラリとして有名なscikit-learnを用いた実装の解説し、実際の機械学習の利用方法に関する理解を深めます。さらに、軸受の振動データを対象とした機械学習による欠陥検出や、余寿命予測に関する講演者の具体的な研究事例紹介ならびに関連するコード解説も行います。機械学習に関してこれから本格的な勉強もしくは導入を始める前に概要と雰囲気を掴むには最適です。

  1. 機械学習の概要
    1. ビッグデータ時代
    2. 機械学習とは?
    3. 機械学習の分類
    4. 教師あり学習
      1. 識別
      2. 回帰
    5. 教師なし学習
      1. モデル推定
      2. パターンマイニング
    6. 半教師あり学習
    7. 深層学習 (ディープラーニング)
    8. 強化学習
    9. 機械学習の基本的な手順
      1. 前処理
      2. 次元の呪い
      3. 主成分分析による次元圧縮
      4. バイアスとバリアンス
      5. 評価基準の設定
        • クロスバリエーション
      6. 簡単な識別器
        • k-近傍法
      7. 評価指標
        • F値
        • ROC曲線
  2. 機械学習の実装方法 (Python解説)
    1. Scikit-learnを用いた機械学習の実装方法
    2. k近傍法による識別
  3. 機械学習による異常検知
    1. 異常検知の基本的な考え方
    2. 性能評価の方法
    3. ホテリング理論による異常検知
    4. 主要な異常検知法
      1. One-class Support Vector Machine
      2. Local Outlier Factor
      3. Isolation Forest
      4. ディープラーニングによる異常検知
    5. 各種異常検知法の比較 (Python解説)
  4. 軸受の振動データを対象とした機械学習による欠陥評価
    1. 軸受の微小欠陥検出 (事例紹介)
    2. Pythonコード解説
    3. 軸受の余寿命予測 (事例紹介)

受講料

複数名同時受講割引について

アカデミック割引

日本国内に所在しており、以下に該当する方は、アカデミック割引が適用いただけます。

ライブ配信セミナーについて