スパース推定の基礎、本質の把握・理解と実装応用技術への展開

再開催を依頼する / 関連するセミナー・出版物を探す
オンライン 開催

日時

開催予定

プログラム

スパース推定は、大学の講義やテキストが少なく、奥が深いので、独学が難しい。拙書「スパース推定100問 with R/Python」 (共立出版) なども、初学者であれば、独力で読み通すことは難しい。また、演習といってもパッケージにデータを放り込むだけあれば、本質を把握するとはほど遠い。  本セミナーでは、数式だけではなく、スクラッチのプログラムを追って、論理的に検証していく。話を聞いて知識を得るというよりは、手を動かして本質を把握するようにしたい。特に、1日の研修で、エキスパートとして活躍できるような、きっかけをつかむことができたら、と考えている。

  1. 線形回帰
    1. 線形回帰
    2. 劣微分
    3. Lasso
    4. Ridge
    5. Lasso とRidge を比較して
    6. elastic ネット
    7. λ の値の設定
  2. 一般化線形回帰
    1. 線形回帰のLasso の一般化
    2. 値のロジスティック回帰
    3. 多値のロジスティック回帰
    4. ポアッソン回帰
    5. 生存時間解析
  3. グループLasso
    1. グループ数が1 の場合
    2. 近接勾配法
    3. グループLasso
    4. スパースグループLasso
    5. オーバーラップグループLasso
    6. 目的変数が複数個ある場合のグループLasso
    7. ロジスティック回帰におけるグループLasso
    8. 一般化加法モデルにおけるグループLasso
  4. Fused Lasso
    1. Fused Lasso の適用事例
    2. 動的計画法によるFused Lasso の解法
    3. LARS
    4. Lasso の双対問題と一般化Lasso
    5. ADMM
  5. グラフィカルモデル
    1. グラフィカルモデル
    2. グラフィカルLasso
    3. 疑似尤度を用いたグラフィカルモデルの推定
    4. Joint グラフィカルLasso
  6. 行列分解
    1. 特異値分解
    2. Eckart – Youngの定理
    3. ノルム
    4. 低階数近似のスパースの適用
  7. 多変量解析
    1. 主成分分析 (1) :SCoTLASS
    2. 主成分分析 (2) :SPCA
    3. K – means クラスタリング
    4. 凸クラスタリング

受講料

複数名受講割引

アカデミー割引

教員、学生および医療従事者はアカデミー割引価格にて受講いただけます。

ライブ配信セミナーについて