音による故障検知および故障予知

再開催を依頼する / 関連するセミナー・出版物を探す
オンライン 開催

本セミナーでは、ディジタル信号処理の基礎から、音の特徴量の求め方までを平易に解説いたします。
また、故障検知への利用および故障予知への発展の方法へのアプローチを紹介いたします。

日時

開催予定

プログラム

画像処理やコンピュータビジョンにおけるAI技術の成功から、次は音の利用だ、という流れができつつあります。特に、これまで産業界から重大な問題であると認識されていたにも関わらず、実際には人間の手に頼らざるを得なかった、機械の故障検知や故障予知の問題に、音が有効に利用できる可能性が出てきました。  本セミナーでは、講師のこれまでの音声研究のノウハウと、各種企業との共同研究の経験値を組み合わせ、音が故障検知や故障予知にどのように利用できるかを説明します。ディジタル信号処理の基礎から、音の特徴量の求め方までを平易に解説した後、それらの故障検知への利用方法、およびその故障予知への発展の方法について、可能なアプローチをご紹介します。また、実際の環境音、騒音などに鑑みて、比較的平易に取り組める雑除去手法の紹介も行います。  実際の現場で、どのようなマイクをどのように取り付けるか等のノウハウもお伝えする予定です。共同研究を実施してきた経験から、本セミナーでは特徴量ベースの方法と学習ベースの方法の二つを軸として、各種特徴量の計算を紹介しつつ、学習ではCNNを中心に、最適な方法の導出の考え方について、また最近の動向に触れ、異常データが少ない場合の対策 (MT法、AE法等) をも説明する予定です。我々の経験手法にも言及します。

  1. はじめに
    1. 正常音と異常音
    2. 音による情景分析
  2. 音信号の基礎
    1. 離散時間信号
    2. ディジタルフィルタ
    3. フーリエ変換
    4. パワースペクトル
    5. 音の特性
  3. 音の特徴量
    1. パワー、周期
    2. スペクトル
    3. ケプストラム、メルケプストラム
    4. 線形予測係数
  4. 雑音除去技術
    1. スペクトル引き算
    2. ウィナーフィルタ
    3. 各種フィルタリング
    4. 複数マイクの利用
  5. 故障検知の方法
    1. 特徴量の利用
    2. 距離尺度の利用
    3. ニューラルネットワークの利用
    4. 最近の手法
  6. 故障予知の方法
    1. 時系列情報の利用
    2. 故障検知方法の有効利用
    3. 最近の試み

受講料

ライブ配信セミナーについて