次世代パワーデバイスの開発動向と実用化に向けた課題

再開催を依頼する / 関連するセミナー・出版物を探す
オンライン 開催

本セミナーでは、次世代パワーデバイスについて取り上げ、現在のパワーデバイスとの比較した際のメリット、開発状況、市場に普及するためのポイント、今後の開発動向について詳解いたします。

日時

開催予定

プログラム

第1部 SiC/GaNパワーデバイスの技術トレンドと課題

(2021年6月30日 10:30〜12:00)

 2020年、コロナウィルスの全世界的な蔓延により、世界各国は人的・経済的に甚大なダメージを受け回復の見通しは全く不透明といった状況にある。しかしこのような中においても、たとえば、地球温暖化ならびに大気汚染対策のための自動車の電動化は人類にとって「待った無」の課題であることに変わりはない。最近ではカリフォルニア州が2035年までに州内でのガソリン車の新車販売を禁止するとの発表をするなど、EVシフト化への要求は極めて大きい。EVの性能を決める基幹部品であるパワーデバイスでは、新材料SiC/GaNデバイスの普及が大いに期待されている。しかしながら現状では、性能、信頼性、さらには価格の面で市場の要求に十分応えられているとは言えない。  本講座では、SiC/GaNパワーデバイスを広く市場に普及するためのポイントは何かについて、強力なライバルであるシリコンIGBTの最新動向を横にらみしながら、わかりやすく解説したい。

  1. パワーエレクトロニクス (パワエレ) 、パワーデバイスとは?
    1. パワエレ&パワーデバイスの仕事
    2. パワー半導体の種類と基本構造
    3. パワーデバイスの適用分野
    4. パワーデバイスを使うお客様は何を望んでいるのか?
  2. 最新シリコンIGBTの進展と課題
    1. パワーデバイス市場の現在と将来
    2. パワーデバイス (IGBT) 開発のポイント
    3. 最新IGBTを支える技術
    4. 薄ウェハ化の限界
    5. IGBT特性改善の次の一手
    6. 新構造IGBT:逆導通IGBT (RC-IGBT) の誕生
    7. シリコンIGBTの実装技術
  3. SiCパワーデバイスの現状と課題
    1. なぜSiCパワーデバイスなのか
    2. 各社はSiC-MOSFETを開発中。なぜSiC-IGBTではないのか?
    3. SiCウェハができるまで
    4. SiC-MOSFET普及拡大のために解決すべき課題
    5. SiC-MOSFET最近のトピックス
    6. SiC-MOSFET内蔵ダイオードのVf劣化とは?
    7. ショットキーバリアダイオード (SBD) 内蔵SiC-MOSFET
  4. GaNパワーデバイスの現状と課題
    1. なぜGaNパワーデバイスなのか?
    2. GaNデバイスの構造
    3. SiCとGaNデバイスの狙う市場
    4. GaNパワーデバイスはHEMT構造。その特徴は?
    5. ノーマリ-オフ・ノーマリーオン特性とはなに?
    6. GaN-HEMTの課題
    7. 縦型GaNデバイスの最新動向
  5. SiCパワーデバイス高温対応実装技術
    1. 高温動作ができると何がいいのか
    2. SiC-MOSFETモジュール用パッケージ
    3. パワーモジュール動作中の素子破壊例
    4. SiCモジュールに必要な実装技術
  6. まとめ

第2部 酸化ガリウムパワーデバイスの研究開発状況と課題

(2021年6月30日 13:00〜14:30)

 酸化ガリウム (Ga2O3) は、次世代パワーデバイス用途の新半導体材料として期待されるに足る、優れた材料物性を有する。また、原理的に大口径かつ高品質な単結晶基板を、融液成長法により安価かつ簡便に作製することができるという、産業上の大きな魅力も合わせ持つ。本講演では、Ga2O3パワーデバイスの位置づけ、魅力、物性面での課題について述べた後、最新のデバイス (トランジスタ、ダイオード) 研究開発の状況、実用化に向けた展望などについて解説する。

  1. はじめに
    1. Ga2O3の材料的特徴 (SiC, GaNとの比較から)
    2. 将来的なGa2O3デバイスの用途
  2. Ga2O3トランジスタ
    1. 横型MESFET
    2. 横型フィールドプレートMOSFET
    3. 横型高周波MOSFET
    4. 縦型ディプレッションモードMOSFET
    5. 縦型エンハンスメントモードMOSFET
    6. 国内外他機関におけるGa2O3トランジスタ開発動向
  3. Ga2O3ショットキーバリアダイオード (SBD)
    1. HVPE成長したドリフト層を有する縦型SBD
    2. 縦型フィールドプレートSBD
    3. Nイオン注入ドーピングを用いて作製したガードリングを有する縦型SBD
    4. 国内外他機関におけるGa2O3ダイオード開発動向
  4. まとめ、今後の展望

第3部 ダイヤモンドパワーデバイスの最新動向と可能性

(2021年6月30日 14:45〜16:15)

 ダイヤモンドは、物質中最高の硬度や熱伝導率を有し、更に極めて高い絶縁破壊電界やキャリア移動度を持つことことから、理論的に最も高耐圧かつ低オン抵抗を実現できる、カーボンニュートラルの実現に資する次世代パワーデバイス材料である。そのため、日本やフランス、ドイツ、アメリカを中心にパワーデバイス応用・社会実装に向けた研究が活発に行われている。我々の研究グループでは、高速成長を用いたダイヤモンドウェハの開発、炭素固溶を用いたダイヤモンドエッチング技術の開発、そして2016年に世界で初めて反転層ダイヤモンドMOSFETの開発をしてきた。  今回、ダイヤモンドウェハから、プロセス、そして半導体デバイスに関する昨今の研究開発状況・課題について紹介する。

  1. ダイヤモンドの魅力と必要性
  2. ダイヤモンド半導体研究の歴史と最近の動向
  3. ダイヤモンドウェハに関する研究開発動向
    1. 成長技術
      1. 高温高圧合成
      2. プラズマCVD
      3. 熱フィラメントCVD
    2. 不純物ドーピング技術
    3. 加工技術
      1. エッチング
      2. 研磨、カット、スライス
      3. カット、スライス
  4. ダイヤモンドダイオードに関する研究開発動向
    1. 金属と半導体ダイヤモンドの接触
    2. SBD
    3. PND (PIND)
    4. Shottky-PND (SPND)
  5. ダイヤモンドトランジスタに関する研究開発動向
    1. BJT
    2. JFET
    3. MESFET
    4. MOSFET
      1. 水素終端MOSFET
      2. Deep Depletion MOSFET
      3. 反転層MOSFET

受講料

複数名同時受講割引について

アカデミック割引

日本国内に所在しており、以下に該当する方は、アカデミック割引が適用いただけます。

ライブ配信セミナーについて