プラスチックの衝撃破壊メカニズムと耐衝撃性向上 (基礎編)

再開催を依頼する / 関連するセミナー・出版物を探す
オンライン 開催

本セミナーでは、プラスチック成型品の塑性変形と破壊機構の解説を通じて、実用的な方法やヒントを詳解いたします。

日時

開催予定

プログラム

分子鎖を構成する共有結合に由来して力を支えることが求められるプラスチックの構造体の破壊は金属等と同様に製品の形状あるいは製品に内在する欠陥に起因する応力集中により、その材料の持つ凝集強度と比べると極めて小さな負荷応力で開始する。そのような製品の強度あるいは耐衝撃強度を向上させるためには、用いる材料の凝集強度を大きくするか、あるいは製品の形状、構造を調整して応力集中を緩和させる必要がある。  基礎編では、連続体力学によって解説されているように、固体の変形は体積一定の剪断変形と体積が変化する体積変形により構成されること、そしてそれらの変形の下で起きる高分子の破壊の機構を解説する。

  1. はじめに
  2. 材料強度の基礎
    1. 固体の理論強度とグリフィスの理論
    2. 固体の変形と応力集中
      1. 剪断変形が支配的な変形
      2. 体積変形が支配的な変形
      3. ひずみの拘束による応力集中の機構
    3. 応力集中の緩和とタフニング
  3. 高分子材料の変形と破壊
    1. 剪断変形支配の高分子材料の変形と破壊
      1. 高分子固体の塑性変形
        1. 結晶性高分子材料の塑性変形
        2. 非晶性ガラス状高分子材料の塑性変形
      2. 高分子材料のソフトニングとネッキング
      3. 配向硬化
      4. 剪断変形支配の下での破壊
        1. 熱可塑性高分子の破壊
        2. 熱硬化性高分子の破壊
      5. 変形速度が一軸伸張の塑性変形に及ぼす影響
      6. クリープ負荷での塑性変形
    2. 体積変型支配の高分子材料の変形と破壊
      1. ボイドの形成とその拡張の安定性
        1. ボイドの塑性変形による拡張
        2. ボイドの非線形弾性変形による拡張
      2. ひずみの拘束とボイドの不安定拡張
      3. ひずみの拘束の下でのボイドの形成と破壊
        1. 純粋伸張 (Pancake) 試験におけるゴムの破壊
        2. 切り欠きのひずみの拘束によるボイドの不安定拡張
      4. ひずみの拘束による高分子材料の脆性的な破壊
        1. 非晶性ガラス状高分子の脆性的な破壊
        2. 結晶性高分子の脆性的な破壊
      5. 変形速度が破壊挙動に及ぼす影響
      6. 切り欠きを持つ結晶性高分子のクリープによる脆性破壊
      7. アルミニュウム合金の破壊との比較
  4. 高分子構造体の強度設計とその評価
    1. 高分子構造体の強度設計とタフニング
    2. 非線形弾塑性解析による高分子の強度設計
      1. 非晶性ガラス状高分子PCの強度設計
        1. PCの真応力 – ひずみ曲線の推定
        2. PC構造体の破壊条件の推定
        3. 種々の境界条件でのPC構造体のタフネスの予測
          1. 切り欠き先端半径の効果
          2. リガメントの厚さの効果
          3. 試験片の幅の効果
      2. 結晶性高分子 (POM) ) の強度設計
        1. POM の真応力 – ひずみ曲線とボイドの形成と拡張状態の推定
        2. POMの破壊条件の推定
        3. 種々の境界条件でのPOM構造体のタフネスの予測
          1. 切り欠きの先端半径の効果
          2. リガメントの厚さの効果
          3. 試験片の幅の効果
    3. プラスチックのタフネスの評価方法と境界条件
    4. 破壊力学による高分子材料のタフネスの評価
  5. まとめ・質疑応答

受講料

複数名受講割引

アカデミー割引

教員、学生および医療従事者はアカデミー割引価格にて受講いただけます。

全3コース申込セット受講料について

2日間コースのお申込み

割引対象セミナー

ライブ配信セミナーについて