本セミナーでは、講師の研究事例を用いながら、テキストマイニングにおける計量的手法とその弱点を概観し、これらを克服する可能性のある分散表現テキストマイニングについて紹介いたします。
機械学習技術を用いたテキストマイニングは、未完成の物であり、現在も新しい技術が次々に発表されております。このセミナーは、参加者が新しい技術を取り入れる際の足掛かりとなるものを目指しております。
IT技術の進歩の中で、近年ではIoTやビッグデータ、AIなどが注目され、様々な実践が行われている。自然言語処理、その一分野であるテキストマイニングもそのひとつである。現在主流のテキストマイニングでは形態素解析とその結果に基づく計量・共起分析が中心的な手法である。しかし、機械学習技術の進歩の中でSkip-gramなどの手法が開発され、それらを活用した分散表現テキストマイニングが実用化され始めている。これの特徴は、これまでは難しかった意味に基づく分析を可能にする点にある。 この講座では、講師の研究事例を用いながら、テキストマイニングにおける計量的手法とその弱点を概観し、これらを克服する可能性のある分散表現テキストマイニングについて見ていく。機械学習技術を用いたテキストマイニングは、未完成の物であり、現在も新しい技術が次々に発表されている。この講座は、参加者が新しい技術を取り入れる際の足掛かりとなるものを目指している。
学校教育法にて規定された国、地方公共団体、および学校法人格を有する大学、大学院の教員、学生に限ります。