時々刻々と変化するシーン中の動く対象物を追跡する課題に対して、効果的な解を与える「パーティクルフィルタ」について、その基礎・方法論から応用、プログラム実装までを網羅した講義内容である。 確率・統計、ベイズ推定を出発点として、問題設定である「状態空間モデル」の定式化、その解を求める「状態推定」課題の明確化、状態推定の数式としての解 (形式的な解) を理解する。これらの理論的な事実に基づいた方法論として、具体的な状態推定のアルゴリズム群を俯瞰する。カルマンフィルタに代表される解析的なフィルタ、パーティクルフィルタをはじめとする各種の近似フィルタ、および、更に発展的な方法について学ぶ。併せて、過去の時刻の推定である「平滑化」や、状態空間モデルに含まれる固定パラメータの推定についても触れる。発展的な課題として、複数対象の同時推定についても概観する。これらの理論および方法論を活用した応用として、複数分野の具体的な事例について概説する。プログラミングの実装例についても簡単に紹介する。