深層学習の「見える化」と次世代の「説明できるAI」

再開催を依頼する / 関連するセミナー・出版物を探す
会場 開催

本セミナーでは、最近特に必要性が注目されている「説明できるAI」について、深層学習などのブラックボックス機械学習の説明性向上、決定木などのホワイトボックス機械学習の精度向上の方法、次世代AIである進化的機械学習、企業へのAI導入を成功させるコツについて平易に解説いたします。

日時

中止

プログラム

昨今、深層学習 (Deep Learning) を企業での業務で利用しようとしたものの、生成された処理を説明することができず、実際は導入できていない企業も多い。  本セミナーでは、最近特に必要性が注目されている「説明できるAI」について、深層学習などのブラックボックス機械学習の説明性向上、決定木などのホワイトボックス機械学習の精度向上の方法、次世代AIである進化的機械学習、企業へのAI導入を成功させるコツについて平易に解説する。

  1. 人工知能と機械学習
    1. 人工知能の考え方の推移
    2. 機械学習の種類と方法
  2. 深層学習 (ディープラーニング) の基礎と問題点
    1. 神経回路網の原理と学習法
    2. 深層学習の基礎と実装方法
    3. 深層学習の最近の手法
    4. 深層学習の問題点と課題
  3. 「説明できるAI」~ブラックボックスの説明性向上~
    1. 説明できるAIとは?
    2. 学習済の深層回路と入出力の関係性の可視化
    3. 深層回路の圧縮と簡約化
    4. 処理過程が理解し易い構造の深層学習
  4. 「説明できるAI」 ~ホワイトボックスの精度向上~
    1. 進化的機械学習の原理
    2. 特徴量の最適化による簡潔な認識処理
    3. 処理過程が説明できる処理の自動生成
    4. 決定木・決定回路の処理の言葉による説明
    5. 小規模かつ高性能な回路の自動設計
  5. 業務へのAI導入方法
    1. AI導入における基本8原則
    2. AIコンサルの事例紹介
  6. まとめと質疑応答

会場

株式会社オーム社 オームセミナー室
101-8460 東京都 千代田区 神田錦町3-1
株式会社オーム社 オームセミナー室の地図

受講料