2012年、画像認識におけるディープラーニングの大幅な性能向上が報告されて以来、人の認識機能を必要とする分野での実用性が報告されている。製品の検査は非常に重要であるが非生産部門であることから、自動化されれば生産性向上に対する効果は大きい。我々は、プレス加工されたプラスティック部品とプラスティック製品表面上の印刷に対する外観検査、および金属製の自動車部品の打音検査に機械学習を活用している。機械学習の活用において性能を上げるためには、トレイニングデータの量と質をどうするかに尽きると言っても良い。 本セミナーでは、我々がこれまでに得た機械学習のトレイニングにおける試行錯誤をもとに、機械学習の有効活用について述べる。 現在、話題となっている機械学習、ディープラーニングとは何か、実際の官能検査問題に対してどのような手順で機械学習を活用すればよいか、うまく行かない場合にはどこを確認すればよいか、等、大学レベルの知識と、我々が実問題に対してどこで失敗し、どう解決してきたかを習得していただき、今後、実際に機械学習を活用して「試行錯誤ができること」を目的とする。 本セミナーを受講したことで、機械学習によって検査を自動化できるということではない。機械学習を用いて実用レベルの性能を達成することはそう簡単ではなく、機械学習のツールを導入した時点から試行錯誤が始まる。ただし、トレイニングデータを何回か見直すことで検査精度の95%程度の性能向上を期待することができることが多い。また、機械学習は100%を保証するものではないことも十分に認識することが必要である。性能はデータに非常に敏感で、実験室から現場、現場の環境変化、等に大きく依存する。