データサイエンス入門講座

再開催を依頼する / 関連するセミナー・出版物を探す
会場 開催

本セミナーでは、データ分析の正しいやり方・手順を学び、自分自身で正しくデータ分析を行えるようになること、データ分析結果を正しく評価できるようになることを目指します。

日時

開催予定

プログラム

機械学習・ディープラーニング・人工知能 (AI) 技術が注目され、データ分析を実務に活用したいと考える方が急増しています。オープンソースの機械学習ツールが充実してきたことで、高度なアルゴリズムを利用した分析を容易に行うことができるようになりました。  しかし、正しい分析の手順・正しい分析結果の評価方法が分からなければ、ツールを正しく使いこなすことはできません。分析の手順・結果の見方が間違っていると、質の高い分析結果を得ることができないばかりでなく、誤った分析結果に基づき誤った判断を下してしまう恐れもあります。  本セミナーでは、データ分析の正しいやり方・手順を学び、自分自身で正しくデータ分析を行えるようになること、データ分析結果を正しく評価できるようになることを目指します。

  1. データの前処理・扱い方
    1. 分析に適したデータ形式、適していないデータ形式
    2. 特徴量 (説明変数) の分類
    3. カテゴリ変数の扱い方
    4. 欠損値の扱い方
    5. データの正しい可視化方法
    6. データ収集時・前処理時の注意点
  2. 機械学習の基本と利用時の注意点
    1. 機械学習とは
    2. 代表的なアルゴリズムとその分類
    3. 機械学習アルゴリズム利用時の注意点
    4. ディープラーニングとその使いどころ
  3. 分析結果の評価法
    1. 回帰モデルの評価基準
    2. 分類 (識別) モデルの評価基準
    3. 精度以外の評価基準とその重要性
  4. 機械学習によるデータ分析のすすめ方
    1. パラメータ調整の必要性とその方法
    2. 過学習についてとその対策
    3. 性能向上のために何をするべきか
  5. ビジネスへの適用について
    1. 分析結果を現場にどう受け入れてもらうか
    2. 機械学習の前にやるべきことはないか
    3. 実運用時の課題
    4. その分析は解くべき課題を解決するものか
    5. 分析結果の公平性
    6. 真実は常に一つ?

会場

品川区立総合区民会館 きゅりあん
140-0011 東京都 品川区 東大井5丁目18-1
品川区立総合区民会館 きゅりあんの地図

受講料

複数名同時受講の割引特典について