本セミナーでは、実験計画に機械学習技術を導入するための必要知識を事例とともに解説いたします。
ビッグデータ時代においては大量のデータから有用な知識を抽出するための機械学習アルゴリズムが重要な役割を果たします。機械学習アルゴリズムの多くは、既にデータが与えられている状況を想定しているものが多く、受動学習と呼ばれています。一方、どのようにデータを取得すれば有用な知識を得ることができるかを考えるアプローチは能動学習 (Active Learning) と呼ばれています。能動学習はデータの取得プロセスの最適化を目的としているため、実験計画法 (Design of Experiment) の一種とみなすことができます。 例えば、未知のシステムにおいて応答が最大となる実験条件をみつけたい場合、応答が高いと予測される条件で実験を行うだけでなく、応答が未知で不確実性の高い条件で実験を行うことも必要となります。前者は最適化を目的とする「搾取 (exploitation) 」と呼ばれ、後者はシステムの推定を目的とする「探索 (exploration) 」と呼ばれます。能動学習では、確率モデルによって未知のシステムをモデル化しつつ、搾取と探索のバランスを適切に制御する枠組を提供します。 本講演では、まず、実験計画法の観点から実験パラメータ空間の境界探索のための能動学習を説明します。続いて、未知のシステムの最大化問題を効率的に解くためのベイズ最適化 (Bayesian Optimization) と呼ばれる方法を、実例を交えて紹介します。