自動車マルチマテリアル化 最前線

再開催を依頼する / 関連するセミナー・出版物を探す
会場 開催

2018年の自動車業界は「材料の大転換期に突入しつつある」と報じられているなか、本セミナーでは、材料や技術を選ぶ側/選ばれる側に役立つ自動車のマルチマテリアル化の動向を1日で詳解いたします。

日時

開催予定

プログラム

第1部「自動車におけるマルチマテリアル化の動向と展望」

(2018年5月23日 10:00〜11:00)

 自動車を取り巻く環境の変化を理解し、将来の自動車の姿を予想し、その構成材料のあるべき姿と動向を見ることによって課題を整理。CO2環境問題に対し軽量化は必須でありCFRPやALのような軽量材料が注目される。ただ、2030年以降は、軽量化だけではなく、本格的なLCA対応が急務になると考えられる。その中でマルチマテリアルは適材適所の考えから極めて重要な位置づけとなることが予想される。その動向と展望をまとめた。

  1. 自動車を取り巻く環境の変化 (2030年)
    1. 自動運転の地域社会に適合したモビリティ
    2. モビリティだけではなく、将来のビジネスモデルに挑戦
  2. 自動車構成材料の動向
    1. 鉄はいまだに主要材料
    2. 軽量材料 (AL, 樹脂、高分子複合材料) に注目
  3. 自動車構成材料の今後 (~2030)
    1. 緊急課題と軽量化
  4. 自動車構成材料の今後 (2030~)
    1. 本格的LCA (CO2排出量低減) の追求
    2. マルチマテリアルの必要性
    3. マルチマテリアルの展望

第2部「マルチマテリアル構造化に向けた接合技術の開発動向」

(2018年5月23日 11:05〜12:05)

 ISMAプロジェクトでは軽量化に資する超ハイテン材やアルミ、マグネ、CFRPなどの材料開発とともに、これらの開発材料と既存材料から成るマルチマテリアル構造に対応する接合技術開発を行っている。具体的には、超ハイテン鋼同士、鋼板/非鉄金属、金属/樹脂などをつなぐ接合技術の確立を目指している。材料の視点からは中高炭素鋼の超ハイテン材の接合技術と異種材料の接合技術に大別できる。接合プロセスには、様々なエネルギー源やメカニズムを用いた手法が開発・実用化されているが、溶融接合、ろう接、固相接合/界面溶着、接着プロセス、機械的締結に分類される。これらは適用箇所に応じた継手性能が求められ、実用的には生産性が高く、コストが低いプロセスが選択されることになる。  本講では継手性能を確保する観点から、超ハイテン材の接合ならびに異材接合技術の開発動向について述べる。

※ここでは、自動車のマルチマテリアル化に向けた接合技術開発の動向を紹介するが、今後、様々な製品の軽量化を目的にマルチマテリアル構造が採用されていくと考えられるので、本講は機械系・材料系技術者や溶接接合関連技術者に役立つと考えている。

  1. 軽量化とマルチマテリアル化
  2. 軽量化と接合技術
  3. NEDO/ISMAプロジェクトの接合技術開発の目標
  4. 中高炭素鋼の接合技術の課題イメージ
  5. 超ハイテン材の抵抗スポット溶接
  6. 超ハイテン材のアークスポット溶接
  7. 超ハイテン材の摩擦点接合 (FSJ)
  8. 中高炭素鋼のFSW現象
  9. 中高炭素鋼のリニア摩擦接合
  10. アルミ/鋼板の抵抗スポット溶接
  11. アルミ/CFRPの摩擦点接合
  12. 鋼材/CFRPのレーザ溶着技術
  13. 鋼材/CFRPの接着接合技術
  14. 同種・異種材料の溶接接合技術の欧米の現状とISMAプロジェクト
  15. 異材接合継手の性能比較

第3部「マルチマテリアル化に対応する異種材料接着技術」

(2018年5月23日 13:00〜14:00)

 「マルチマテリアル化に対応する異種材料接着技術」と題して、異種材接着接合が注目を集めている背景、被着材に親和性があり、かつ実用条件を満たす構造用接着剤の選定、被着材の表面処理方法、構造用接着剤に要求される事項、接着後の被着材変化への対応、接着作業方法に関して、短時間接着へのアプローチについて現状及び将来を紹介する。

  1. 何故、異種材料の接着 (接合) なの?
  2. 接合手法の長所、短所 (接着接合は異種材接合に適している)
  3. 接着作業の留意点を知る (作業の標準化)
  4. 構造接着の信頼性を達成するための基本条件
  5. 異種材料の接着技術 (接着剤の選び方)
    1. 金属とプラスチックの接着
    2. 被着材の性質を知る (金属材料の特性)
    3. 水溶液中における金属の標準電極電位
  6. 被着材の表面処理&表面改質
    1. 各種表面処理法と原理
    2. 表面処理効果の判定
  7. 金属 (軟鋼板) とCFRPの接着
  8. 金属 (軟鋼板) とPPの接着
  9. 金属 (軟鋼板) とPA (ポリアミド) の接着
  10. 短時間接着へのアプローチ (接着工法と接着剤及び接着速度)
    1. 二液定量混合吐出装置 (二液形を一液形として)
    2. 電磁誘導加熱の利用
    3. マイクロ波の利用
    4. 超音波の利用
  11. 構造接着技術で失敗しないために (工程で接着を作りこむ)

第4部「軽量複合材料構造の健全性診断システムの開発」

(2018年5月23日 14:10〜15:10)

 近年、軽量化が必要な輸送機構造体において、複合材料の適用が急速に進みつつある。例えば民間旅客機では、構造材料の約半分にCFRP等の複合材料が用いられ、自動車やパーソナルモビリティにおいても複合材を使用したマルチマテリアル化が進められている。しかしながら、複合材料積層板には、外観からは確認の困難な内部損傷が複雑に発生・進展する。そのため現在、複合材構造の信頼性を確保できる健全性診断システムの確立が望まれており、構造部材に組み込んだセンサで簡便に診断を行なう構造ヘルスモニタリング技術、および複合材に適した非破壊検査技術の研究開発が進められている。  そこで本講演では、特に超音波と光学に基づいた健全性診断システムについて説明するとともに、著者らが研究を進めている複合材料の損傷評価手法について紹介する。

  1. CFRP複合材料の実用化
  2. 構造ヘルスモニタリングと非破壊検査の関係
  3. 複合材構造に適した健全性診断システムの要素技術
    1. 光ファイバセンサ
    2. 超音波ガイド波
  4. 光ファイバセンサを用いた複合材の健全性診断
  5. 超音波ガイド波によるCFRP構造のヘルスモニタリング
  6. レーザー超音波による複合材構造の非破壊検査手法

第5部「欧州完成車OEMのマルチマテリアル・異材接合技術の方向性」

(電動化や自動運転技術との相互影響含む)

(2018年5月23日 15:20〜16:20)

 昨今、自動車ボディ分野においては、ハイテンやホットスタンプ等の鉄系やアルミニウムだけでなく、マグネシウムやCFRPなども含めたマルチマテリアル化、そしてこれら異種材料を接合する技術への注目が高まっている。特に、欧州の完成車OEMは、CFRPの多用 (BMWのiシリーズなど) 、アルミやマグネシウムを含む各種金属とCFRPの最適配置 (AudiのA8など) を先行させているが、彼らのマルチマテリアル化は、国内勢と異なり、安全・環境規制対応だけではなく、新しいボディコンセプトやフレームワーク構築目的色も強い。そのため、PHEVやEVを始めとした電動化、およびADAS等の自動運転レベルの進化による車両全体の重量増や各部位の重量比・衝突保護性の変化への対応も積極化しており、2020年代前半~中頃に掛けて、これらの最適適合を図った新型プラットフォーム・車両が登場する可能性が高まっている。  そこで本講演では、欧州OEMのボディ系マルチマテリアルや異材接合技術の現状動向と今後の方向性をお話しすると同時に、電動化や自動運転進化等に合わせて、どのようにボディ材料やフレームワークを変えようとしているかも詳述する。最後に、このような欧州の動きに対して、国内メーカーはどのような開発方向性があり得るのかを提示していく。

会場

機械振興会館
105-0011 東京都 港区 芝公園3-5-8
機械振興会館の地図

受講料

複数名同時受講の割引特典について