TensorFlowで始めるAI導入とビジネス活用

再開催を依頼する / 関連するセミナー・出版物を探す
会場 開催

日時

開催予定

プログラム

今やAI技術の主流となっているディープラーニングでは、ニューロンの働きを疑似的に多重化したニューラルネットワークを利用しています。本セミナーでは、AI技術の概要から始めてディープラーニングとはどのようなものなのか、そしてGoogle 社のディープラーニング (深層学習) フレームワークであるTensorFlowの機能および使い方に解説を進めます。  その後、TensorFlowの稼働環境を構築して、稼働環境上でのサンプル実行とサンプル内容の解説へと進めていき、TensorFlowのディープラーニングを実現するコード記述スタイルが理解できるようにしていきます。

  1. AI利用の現状
    1. 医療分野
    2. ビジネス分野
    3. AIアシスタント・システム
    4. シンギュラリティ (技術的特異点) の先にある2045年の未来とは?
  2. Windows10上にTensorFlowの実行環境構築
    1. Anacondaのインストール
    2. Anacondaで仮想環境作成
    3. JupyterNotebookをインストール
    4. TensorFlowのインストール
  3. Python言語の基礎
    1. 算術演算
    2. データ型
    3. 変数
    4. リスト (List)
    5. Dictionary
    6. Boolean
    7. if文
    8. for文
    9. 関数
    10. クラス
    11. コンストラクタ
    12. Numpy (外部ライブラリ)
    13. 配列と配列の計算
    14. ブロードキャスト
  4. ディープラーニング
    1. ディープラーニングとは
    2. ディープラーニング少史
    3. ディープラーニングの実用例
    4. ディープラーニングのこれから
  5. TensorFlow
    1. TensorFlowとは
    2. TensorFlowの普及率は他を圧倒している
    3. TensorFLowが利用可能な用途
    4. TensorFlowの利点と欠点
  6. パーセプトロン
    1. 単純パーセプトロン
    2. 単純パーセプトロンの限界
    3. 多層パーセプトロン
    4. 線形関数と非線形関数
  7. ニューラルネットワーク
    1. パーセプトロンからニューラルネットワークへ
    2. 活性化関数
      1. シグモイド関数
      2. ステップ関数
      3. ランプ関数ReLU (RectifiedlinearUnit)
    3. 多次元配列の計算
    4. 3層ニューラルネットワークの実装 (パーセプトロン)
      1. 行列の内積 (ドット積)
      2. 入力層から第1層への信号の伝達
      3. 第1層から第2層への信号の伝達
      4. 第2層から出力層への信号の伝達
      5. 出力層の設計
      6. 恒等関数
      7. ソフトマックス関数
      8. 手書き文字認識
    5. ロジステック回帰
    6. One – Hot – Vector
    7. バックプロパゲーション
    8. 1つのニューロン層の場合
    9. 2層からなるグラフの
    10. 3層からなるグラフの
    11. パラメーター (重みとバイアス) の最適化方法
    12. ニューラルネットワークのパラメータ最適化
    13. 相関と回帰
    14. 線形回帰
    15. 損失関数 (LossFunction)
    16. Gradientdescent勾配降下法
      1. サンプル線形回帰を使用
      2. サンプルシグモイド関数を使用
  8. 誤差逆伝播法
    1. 計算グラフ
    2. 連鎖率
    3. 逆伝播
    4. レイヤの実装
      1. 単純なレイヤ
      2. 活性化関数レイヤ
      3. Affine/Softmaxレイヤ
    5. 誤差逆誤差伝搬法の実装
  9. 畳み込みニューラルネットワーク (CNN : Convolutional Neural Networks)
    1. 全体構造
    2. 畳み込み層
    3. プーリング層
    4. Convolution/Poolingレイヤの実装
    5. CNNの実装と可視化
    6. 代表的なCNNLeNetとAlexNet

会場

ちよだプラットフォームスクウェア
101-0054 東京都 千代田区 神田錦町3-21
ちよだプラットフォームスクウェアの地図

受講料

案内割引・複数名同時申込割引について

シーエムシーリサーチからの案内をご希望の方は、割引特典を受けられます。
また、2名以上同時申込で全員案内登録をしていただいた場合、2名様目以降は半額 (税込 24,000円)となります。

アカデミック割引

学校教育法にて規定された国、地方公共団体、および学校法人格を有する大学、大学院の教員、学生に限ります。