パターン認識・機械学習の基礎とPythonによる実装入門

再開催を依頼する / 関連するセミナー・出版物を探す
会場 開催

日時

開催予定

プログラム

本セミナーでは、近年様々な分野で注目を集めているパターン認識・機械学習とは何かについて、様々な例をもとに解説を行います。また、機械学習に基づくパターン認識のシステムを簡単に実装するための方法についてPythonの入門も含め説明します。また、最近話題の深層学習 (Deep Learning) についても解説を行い、実装例及び、実装の方法を紹介します。

  1. パターン認識の基礎知識
    1. パターン認識とは
    2. パターン認識と機械学習
    3. 機械学習の枠組み
    4. パターン認識手法の紹介
      • k近傍法
      • 線形識別関数
      • 単純パーセプトロン
      • サポートベクトルマシン
      • ランダムフォレスト
      • 多層パーセプトロン
      • 深層学習
    5. 実際の開発事例
  2. Pythonの概要
    1. Pythonとは
    2. Pythonのメリット・使い方のポイント
    3. Pythonを使いこなすためのモジュール
      • numpy
      • scipy
      • scikit-learn ほか
    4. Pythonの環境構築法
    5. Pythonの実行環境
    6. Pythonの文法
    7. 数値計算ライブラリ numpyの詳細
  3. Pythonによる多クラス分類器の実装
    1. scikit-learnとは
    2. scikit-learnを用いた機械学習の枠組み
    3. 使用する多クラス分類器
    4. Pythonでの多クラス分類の処理の流れ
      1. 特徴量の読み込み
      2. 識別器の準備
      3. 識別器の学習
      4. テストデータの評価
      5. 結果の出力
      6. 学習した識別器の保存、読み込み
    5. 各種多クラス分類手法の切り替え
    6. 各種多クラス分類手法の比較
    7. パラメータの自動調整法
  4. Deep Learningの利用
    1. Deep Learningの代表的なパッケージ
    2. Kerasを用いたクラス分類器としてのDeep Learning
    3. Kerasを用いた特徴抽出を含めたDeep Learning
    4. 学習済みモデルの読み込みと利用
  5. まとめ

会場

品川区立総合区民会館 きゅりあん
140-0011 東京都 品川区 東大井5丁目18-1
品川区立総合区民会館 きゅりあんの地図

受講料

複数名同時受講の割引特典について