(2017年4月21日 10:00〜11:30)
自動運転のための周辺認識技術について、車載カメラとレーザレーダによるセンサフュージョン手法を解説します。周辺認識としての車載カメラは、対象物体の反射特性に依存しないパッシブセンサとして、各種検出対象に適用可能です。 これにパターン認識能力を加えると更に用途が広がり、走行環境で検出する必要のある、他車両、車線、信号、標識、そして歩行者用の検出センサとして用いることが可能です。しかし、カメラでの距離推定は課題が多いため、アクティブセンサとのフュージョンが必要になります。レーザレーダは、カメラとは違った特性のセンサとして、自動運転に欠かせないものになる可能性があります。 本講では、車載カメラに必要とされる画像処理アルゴリズムの基本とレーザレーダによる物体認識手法を述べ、更に両者を融合するセンサフュージョンについて解説します。
(2017年4月21日 12:10〜13:40)
この講座を通して、普及が進んでいる周辺監視カメラの製品化の歴史から将来動向までを把握することが出来ます。また、周辺監視カメラを用いた画像認識技術により、どの様な機能が実現出来るかを俯瞰し、それらに必要な技術が理解出来ます。 前方カメラによる一般的な画像認識技術に対する、特有の課題や技術を、実環境での映像を交えながら紹介します。
(2017年4月21日 13:50〜15:20)
自動車の予防安全技術の普及、さらに自動運転技術の実用化へ向けて、カメラを用いた画像センシング技術の高度化が進んでいる。 本講演では、単眼カメラ、ステレオカメラを用いて3次元計測や物体の検知・識別を行う技術について述べ、さらに車載環境における外界センシングへの応用事例について紹介する。
(2017年4月21日 15:30〜17:00)
ディープラーニング、特に畳み込みニューラルネットワーク (CNN) は、一般物体認識で人の認識精度に迫っている。CNNにより、従来の画像認識のフレームワークが大きく変化し、さらに画像認識以外への応用も進んでいる。 本講演では、CNNの仕組みと画像認識の応用事例、我々の研究グループでの取り組みについて紹介する。