本セミナーでは、スパース学習の基礎から解説し、スパース学習が有効な統計モデル、スパース学習手法、応用事例、効率的な最適化手法について詳解いたします。
機械学習の応用において、画像や遺伝子データといった高次元データは頻繁に現れ、その重要性は高い。高次元データ解析には、データの含む不必要な情報に学習結果が影響され、過学習を引き起こしやすいという難しさがある。このような問題を回避する有効な方法として「スパース学習」がある。スパース学習は、データの本質的に意味のある情報の低次元性 (スパース性) を利用し、目的に関係ない情報を削除しながら学習をする方法である。 本講義では、スパース学習の全体像を概略的に説明する。まず、スパース学習が有効な統計モデルを紹介し、その上でどのようなスパース学習手法があるかを解説する。そして、その統計理論や、画像処理などのいくつかの応用も紹介する。さらに、スパース学習を実現させる計算手法として、効率的な最適化手法も講義する。