導電性高分子の薄膜化合成、高導電化と技術・市場の動向

再開催を依頼する / 関連するセミナー・出版物を探す
会場 開催

本セミナーでは、導電性高分子材料の電解合成、高導電化、市場動向について詳解いたします。

日時

開催予定

プログラム

第1部 超音波場、遠心場、超臨界流体ならびにイオン液体を反応場とする導電性高分子材料の電解合成 (10:45~12:15)

 芳香族化合物の酸化重合によって生成する導電性高分子は多様な化学的、物理的有用特性を有することから機能性材料として広範な分野で注目されており、また一部は実用化もされている。  導電性高分子材料のこのような特性・機能は薄膜化によって一層顕著に発現される場合が多く、そのため導電性高分子膜の製造技術は産業上極めて重要である。  これら導電性高分子を膜材料として得るためには、一般に電解重合法が用いられる。しかしながら、その他の物理・化学構造や秩序性は膜材料の合成時に非蓋然的に決定され、また電解重合の駆動エネルギー (電気化学エネルギー) 自身の制御、すなわち電流密度や電極電位の制御による重合膜構造の制御範囲も狭い。  さらには多くの導電性高分子は溶媒に対して不溶であることから合成後の成形加工も困難となってしまう。  つまり、高分子膜合成過程と膜構造制御過程を同時に行ういわば構造制御型電解重合法の開発は非常に重要な課題といえる。  一方、超音波や遠心力などの力学エネルギーは電解重合を直接駆動させるものではないが、電気化学エネルギーに重量して印加すれば、電気化学エネルギーだけでは不可能な重合膜物性の制御が達成される。また、特異なメディア効果を
有するイオン液体や超臨界流体の利用も、重合膜物性の新規制御法として期待できるものである。

 本講演では構造制御型電解重合法の開拓を念頭に置き、演者らが実施した特殊な環境場や媒体を利用した導電性高分子の電解合成について紹介したい。

  1. はじめに
  2. 超音波照射場における電解重合
    1. 超音波とは?
    2. 超音波照射下での電解重合
    3. 超音波効果を活用する導電性高分子/カーボンファイバーナノ複合材料の創製
    4. 超音波乳化を活用する水電解液中での疎水性モノマーのエマルション電解重合
    5. パルス-ソノエレクトロケミカル法を用いる導電性高分子マイクロボールの電解合成
  3. 遠心場における電解重合
    1. 遠心場とは?
    2. 遠心場を活用する電解重合制御
    3. 遠心場における電解共重合反応
  4. イオン液体中における電解重合
    1. イオン液体とは?
    2. イオン液体を電解媒体とする電解重合
  5. 超臨界流体中における電解重合
    1. 超臨界流体とは?
    2. 超臨界流体を電解媒体とする電解重合
    3. 超臨界流体中でのテンプレート電解重合を用いる導電性高分子ナノシリンダーの創製
  6. おわりに

第2部 導電性高分子 (PEDOT) の特性、高導電化と技術、市場の動向 (13:00~16:30)

 PEDOTの最先端の分野でのアップデートした応用また各社の使用実例を判り易く説明します。  PEDOTの高導電化については開発動向に着目します。

  1. PEDOTの特性と構造
  2. PEDOTの応用分野・使用実例
    1. 有機ELにおけるPEDOTの適用
    2. 薄膜太陽電池・色素増感型太陽電池におけるPEDOTの適用
    3. タッチパネル 電子ペーパー エッチング剤
    4. リチウムイオンバッテリーの正極材への展開
    5. エネルギーハーべスト
  3. 高導電PEDOTの開発
    1. 超音波重合法
    2. 超臨界重合法
    3. 2次ドーパントの研究
  4. 市場の動向と今後の予測

会場

東京流通センター
143-0006 東京都 大田区 平和島6-1-1
東京流通センターの地図

受講料

複数名同時受講の割引特典について