蛍光体を含めた無機材料合成の基礎と液相合成技術

再開催を依頼する / 関連するセミナー・出版物を探す
会場 開催

本セミナーでは、無機材料に関連する技術者を対象に、1日で基礎から応用・最新動向、将来性まで無機材料合成の全てを網羅して解説いたします。

日時

開催予定

プログラム

第1部 高機能化及び新規材料探索へ向けた無機材料合成技術の基礎と最新動向 〜蛍光体を中心に〜

(2014年3月12日 10:30~13:10)

 白色LED用蛍光体、触媒、電池、誘電体など、セラミックス系無機固体材料分野において、効果的に新規材料を探索し、高機能化の達成を可能にする普遍的な無機材料合成技術を紹介します。  材料探索に適合する信頼性の高い様々な溶液合成法の原理と適用例を解説し、ついで並列合成による材料探索および高機能化の実際を紹介し、同分野に関わる研究者・技術者への便宜を図ることを趣旨とします。  強調すべきポイントは、本講座受講により、『 (ユビキタス) いつでも・どこでも・誰もが』行うことの出来る無機材料探索技術と高機能化技術を取得できることです。  本セミナーは、無機材料合成の初心者であっても、また無機材料合成で十分経験のある研究者・技術者のどちらにおいても、安心して受講していただけます。

  1. はじめに
    1. 無機固体材料合成技術の現状と問題点
    2. 新規無機固体材料を探索するには?
  2. 無機固体材料を合成するための基礎 (根本原理)
    1. 誰もが使う伝統的な高温固相法:
      目的物の合成が困難、何故高温が必要?
    2. 簡単な溶液法である沈殿法:
      粒径が小さく反応性が向上、組成制御に難
    3. ゾル・ゲル法の本質:
      均一な多成分系ゲルの作製は困難
    4. 知っていて損のない錯体重合法:
      超均一セラミックス合成を可能にする
    5. PVA法/アモルファス金属錯体法 (AMC法) :
      水を溶媒とする簡便な無機材料合成法
  3. 水溶性チタン錯体を用いた水熱法による酸化チタンの合成
    1. 水溶性チタン錯体?チタンが水に溶ける!その作り方
    2. 酸化チタンの4つの多形の選択的合成が簡単にできる
    3. 酸化チタンの結晶形態制御:特異な結晶形態・特定結晶面の露出方法
    4. ブロンズ型酸化チタン膜の親水性
  4. グリコール修飾シラン (GMS) を用いた水溶液からのケイ素含有蛍光体合成
    1. 【問】なぜ今ケイ素か?【答】ケイ素含有セラミックスは機能の宝庫
    2. ケイ素含有セラミックス合成は異常に困難:溶液法が使えない!
    3. 新しいケイ素化合物の開発:水に分散可能なケイ素化合物GMSのインパクト
    4. GMSの合成方法:誰でもできる驚嘆すべき簡単さ
    5. GMSを活用した水溶液プロセスによるケイ素含有蛍光体合成
      1. 蛍光体合成に求められること
      2. 水熱ゲル化法によるCa3Sc2Si3O12:Ce3+の合成
      3. 均一沈殿法によるZn2SiO4:Mn2+の合成
      4. 凍結乾燥法による (Sr,Ba)2SiO4:Eu2+の合成
      5. 凍結乾燥法及び還元硫化法によるBa2SiS4:Eu2+の合成
      6. アモルファス金属錯体法によるBa3Si6O12N2:Eu2+の合成
      7. 錯体重合法によるY2SiO5:Ce3+,Tb3+の合成
  5. 溶液法を基礎とする並列合成による蛍光体の高機能化及び新蛍光体探索
    1. 新規蛍光体探索の手法
      1. 薄膜コンビナトリアル
      2. メルトコンビナトリアル
      3. 計算科学的アルゴリズムによるコンビナトリアル
      4. 溶液並列合成
    2. 溶液並列合成法による共賦活緑色蛍光体Y2SiO5:Ce3+, Tb3+の最適組成の決定:10倍強度アップ
    3. 鉱物にヒントを得た溶液並列合成法による新規ケイ酸塩蛍光体の探索
      1. 霞石をヒント:近紫外光励起で黄緑色発光蛍光体 NaAlSiO4:Eu2+
      2. ベニト石をヒント:近紫外光励起で青緑色発光蛍光体 BaZrSi3O9:Eu2+
      3. ジャービス輝石をヒント:近紫外光励起で緑色発光蛍光体 Na3ScSi3O9:Eu2+
      4. ヒレブラント石をヒント:青色光励起で赤橙色発光蛍光体SrCaSiO4:Eu2+
    4. 超高演色性面光源の開発における蛍光体需要
      1. CaAlSiN3の代替酸化物蛍光体の紹介:ケイ酸カルシウム及びリン酸塩系蛍光体
      2. 青緑蛍光体の重要性:BaZrSi3O9:Eu2+及びLiCaPO4:Eu2+
  6. おわりに
    1. 溶液法の重要性:組成の高度制御、微量ドーパントの均一分散、信頼性の高い物質探索
    2. コストをかけず誰でもマスターきるユビキタス溶液法
    3. 民間企業との共同研究・技術移転の取り組み

第2部 酸化物・窒化物 (蛍光体、光触媒) における液相合成技術

(2014年3月12日 13:50~16:30)

 本講演では下記のような研究分野を通じて、酸化物や酸窒化物、窒化物の液相合成法を紹介いたします。

  1. エネルギー・環境問題
    1. 現在のエネルギー問題に関して
    2. 代替エネルギーに関して
  2. 物質と材料に関して
    1. 物質と材料の違い
    2. 材料としての無機物質の特異性
  3. 溶液プロセス
    1. 溶液プロセスの概要
    2. 水熱法
      1. 水熱法とは
      2. 水熱法の原理
      3. 水熱法による光触媒合成
      4. 水熱法の現在
    3. 水熱電気化学法
      1. 水熱電気化学法とは
      2. 水熱電気化学法の原理
      3. 水熱電気化学法による酸化物薄膜合成例
    4. 超臨界プロセス
      1. 超臨界プロセスとは
      2. 超臨界プロセスの原理
      3. 超臨界プロセスの実例
    5. ソルボサーマル法
      1. ソルボサーマル法とは
      2. ソルボサーマル法の原理
      3. ソルボサーマル法の実例
    6. アンモノサーマル法
      1. アンモノサーマル法とは
      2. アンモノサーマル法の原理
      3. アンモノサーマル法の実例
  4. 溶液合成法による最近の成果
    1. 白色LED用蛍光体材料
    2. 可視光応答型水分解光触媒
  5. 溶液プロセスの将来
    1. 人工光合成への挑戦
    2. リチウムイオン電池負極材料への応用可能性

会場

品川区立総合区民会館 きゅりあん
140-0011 東京都 品川区 東大井5丁目18-1
品川区立総合区民会館 きゅりあんの地図

受講料

複数名同時受講の割引特典について

全2コース申込割引受講料ついて

対象セミナー